Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mathematics (Basel) ; 10(20)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36540372

RESUMO

Hepatitis D virus is an infectious subviral agent that can only propagate in people infected with hepatitis B virus. In this study, we modified and further developed a recent model for early hepatitis D virus and hepatitis B virus kinetics to better reproduce hepatitis D virus and hepatitis B virus kinetics measured in infected patients during anti-hepatitis D virus treatment. The analytical solutions were provided to highlight the new features of the modified model. The improved model offered significantly better prospects for modeling hepatitis D virus and hepatitis B virus interactions.

2.
BMC Bioinformatics ; 23(Suppl 8): 424, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241988

RESUMO

BACKGROUND: RNA deleterious point mutation prediction was previously addressed with programs such as RNAmute and MultiRNAmute. The purpose of these programs is to predict a global conformational rearrangement of the secondary structure of a functional RNA molecule, thereby disrupting its function. RNAmute was designed to deal with only single point mutations in a brute force manner, while in MultiRNAmute an efficient approach to deal with multiple point mutations was developed. The approach used in MultiRNAmute is based on the stabilization of the suboptimal RNA folding prediction solutions and/or destabilization of the optimal folding prediction solution of the wild type RNA molecule. The MultiRNAmute algorithm is significantly more efficient than the brute force approach in RNAmute, but in the case of long sequences and large m-point mutation sets the MultiRNAmute becomes exponential in examining all possible stabilizing and destabilizing mutations. RESULTS: An inherent limitation in the RNAmute and MultiRNAmute programs is their ability to predict only substitution mutations, as these programs were not designed to work with deletion or insertion mutations. To address this limitation we herein develop a very fast algorithm, based on suboptimal folding solutions, to predict a predefined number of multiple point deleterious mutations as specified by the user. Depending on the user's choice, each such set of mutations may contain combinations of deletions, insertions and substitution mutations. Additionally, we prove the hardness of predicting the most deleterious set of point mutations in structural RNAs. CONCLUSIONS: We developed a method that extends our previous MultiRNAmute method to predict insertion and deletion mutations in addition to substitutions. The additional advantage of the new method is its efficiency to find a predefined number of deleterious mutations. Our new method may be exploited by biologists and virologists prior to site-directed mutagenesis experiments, which involve indel mutations along with substitutions. For example, our method may help to investigate the change of function in an RNA virus via mutations that disrupt important motifs in its secondary structure.


Assuntos
Mutação INDEL , RNA , Mutação , Mutação Puntual , RNA/química , RNA/genética , Análise de Sequência de RNA
3.
Mathematics (Basel) ; 10(12)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-36245949

RESUMO

Mathematical models, some of which incorporate both intracellular and extracellular hepatitis C viral kinetics, have been advanced in recent years for studying HCV-host dynamics, antivirals mode of action, and their efficacy. The standard ordinary differential equation (ODE) hepatitis C virus (HCV) kinetic model keeps track of uninfected cells, infected cells, and free virus. In multiscale models, a fourth partial differential equation (PDE) accounts for the intracellular viral RNA (vRNA) kinetics in an infected cell. The PDE multiscale model is substantially more difficult to solve compared to the standard ODE model, with governing differential equations that are stiff. In previous contributions, we developed and implemented stable and efficient numerical methods for the multiscale model for both the solution of the model equations and parameter estimation. In this contribution, we perform sensitivity analysis on model parameters to gain insight into important properties and to ensure our numerical methods can be safely used for HCV viral dynamic simulations. Furthermore, we generate in-silico patients using the multiscale models to perform machine learning from the data, which enables us to remove HCV measurements on certain days and still be able to estimate meaningful observations with a sufficiently small error.

4.
Math Biosci ; 343: 108756, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883104

RESUMO

Mathematical models for hepatitis C virus (HCV) dynamics have provided a means for evaluating the antiviral effectiveness of therapy and estimating treatment outcomes such as the time to cure. Recently, a mathematical modeling approach was used in the first proof-of-concept clinical trial assessing in real-time the utility of response-guided therapy with direct-acting antivirals (DAAs) in chronic HCV-infected patients. Several retrospective studies have shown that mathematical modeling of viral kinetics predicts time to cure of less than 12 weeks in the majority of individuals treated with sofosbuvir-based as well as other DAA regimens. A database of these studies was built, and machine learning methods were evaluated for their ability to estimate the time to cure for each patient to facilitate real-time modeling studies. Data from these studies exploring mathematical modeling of HCV kinetics under DAAs in 266 chronic HCV-infected patients were gathered. Different learning methods were applied and trained on part of the dataset ('train' set), to predict time to cure on the untrained part ('test' set). Our results show that this machine learning approach provides a means for establishing an accurate time to cure prediction that will support the implementation of individualized treatment.


Assuntos
Hepatite C Crônica , Hepatite C , Antivirais/uso terapêutico , Quimioterapia Combinada , Hepacivirus , Hepatite C Crônica/tratamento farmacológico , Humanos , Cinética , Aprendizado de Máquina , Modelos Teóricos , Estudos Retrospectivos , Resultado do Tratamento
5.
Mathematics (Basel) ; 9(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34540628

RESUMO

Hepatitis D virus (HDV) is classified according to eight genotypes. The various genotypes are included in the HDVdb database, where each HDV sequence is specified by its genotype. In this contribution, a mathematical analysis is performed on RNA sequences in HDVdb. The RNA folding predicted structures of the Genbank HDV genome sequences in HDVdb are classified according to their coarse-grain tree-graph representation. The analysis allows discarding in a simple and efficient way the vast majority of the sequences that exhibit a rod-like structure, which is important for the virus replication, to attempt to discover other biological functions by structure consideration. After the filtering, there remain only a small number of sequences that can be checked for their additional stem-loops besides the main one that is known to be responsible for virus replication. It is found that a few sequences contain an additional stem-loop that is responsible for RNA editing or other possible functions. These few sequences are grouped into two main classes, one that is well-known experimentally belonging to genotype 3 for patients from South America associated with RNA editing, and the other that is not known at present belonging to genotype 7 for patients from Cameroon. The possibility that another function besides virus replication reminiscent of the editing mechanism in HDV genotype 3 exists in HDV genotype 7 has not been explored before and is predicted by eigenvalue analysis. Finally, when comparing native and shuffled sequences, it is shown that HDV sequences belonging to all genotypes are accentuated in their mutational robustness and thermodynamic stability as compared to other viruses that were subjected to such an analysis.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35282153

RESUMO

Hepatitis delta virus (HDV) is an infectious subviral agent that can only propagate in people infected with hepatitis B virus (HBV). HDV/HBV infection is considered to be the most severe form of chronic viral hepatitis. In this contribution, a mathematical model for the interplay between HDV and HBV under anti-HDV treatment is presented. Previous models were not designed to account for the observation that HBV rises when HDV declines with HDV-specific therapy. In the simple model presented here, HDV and HBV kinetics are coupled, giving rise to an improved viral kinetic model that simulates the early interplay of HDV and HBV during anti-HDV therapy.

7.
AIP Conf Proc ; 22932020.
Artigo em Inglês | MEDLINE | ID: mdl-33349734

RESUMO

Callibration in mathematical models that are based on differential equations is known to be of fundamental importance. For sophisticated models such as age-structured models that simulate biological agents, parameter estimation or fitting (callibration) that solves all cases of data points available presents a formidable challenge, as efficiency considerations need to be employed in order for the method to become practical. In the case of multiscale models of hepatitis C virus dynamics that deal with partial differential equations (PDEs), a fully numerical parameter estimation method was developed that does not require an analytical approximation of the solution to the multiscale model equations, avoiding the necessity to derive the long-term approximation for each model. However, the method is considerably slow because of precision problems in estimating derivatives with respect to the parameters near their boundary values, making it almost impractical for general use. In order to overcome this limitation, two steps have been taken that significantly reduce the running time by orders of magnitude and thereby lead to a practical method. First, constrained optimization is used, letting the user add constraints relating to the boundary values of each parameter before the method is executed. Second, optimization is performed by derivative-free methods, eliminating the need to evaluate expensive numerical derviative approximations. These steps that were successful in significantly speeding up a highly non-efficient approach, rendering it practical, can also be adapted to multiscale models of other viruses and other sophisticated differential equation models. The newly efficient methods that were developed as a result of the above approach are described. Illustrations are provided using a user-friendly simulator that incorporates the efficient methods for multiscale models. We provide a simulator called HCVMultiscaleFit with a Graphical User Interface that applies these methods and is useful to perform parameter estimation for simulating viral dynamics during antiviral treatment.

8.
Mathematics (Basel) ; 8(9)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33224865

RESUMO

Parameter estimation in mathematical models that are based on differential equations is known to be of fundamental importance. For sophisticated models such as age-structured models that simulate biological agents, parameter estimation that addresses all cases of data points available presents a formidable challenge and efficiency considerations need to be employed in order for the method to become practical. In the case of age-structured models of viral hepatitis dynamics under antiviral treatment that deal with partial differential equations, a fully numerical parameter estimation method was developed that does not require an analytical approximation of the solution to the multiscale model equations, avoiding the necessity to derive the long-term approximation for each model. However, the method is considerably slow because of precision problems in estimating derivatives with respect to the parameters near their boundary values, making it almost impractical for general use. In order to overcome this limitation, two steps have been taken that significantly reduce the running time by orders of magnitude and thereby lead to a practical method. First, constrained optimization is used, letting the user add constraints relating to the boundary values of each parameter before the method is executed. Second, optimization is performed by derivative-free methods, eliminating the need to evaluate expensive numerical derivative approximations. The newly efficient methods that were developed as a result of the above approach are described for hepatitis C virus kinetic models during antiviral therapy. Illustrations are provided using a user-friendly simulator that incorporates the efficient methods for both the ordinary and partial differential equation models.

9.
Antiviral Res ; 180: 104862, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32592829

RESUMO

BACKGROUND & AIMS: Mathematical modeling of viral kinetics has been shown to identify patients with chronic hepatitis C virus (HCV) infection who could be cured with a shorter duration of direct-acting antiviral (DAA) treatment. However, modeling therapy duration has yet to be evaluated in recently infected individuals. The aim of this study was to retrospectively examine whether modeling can predict outcomes of six-week sofosbuvir (SOF) and weight-based ribavirin (R) therapy in individuals with recent HCV infection. METHODS: Modeling was used to estimate viral host parameters and to predict time to cure for 12 adults with recent HCV infection (<12 months of infection) who received six weeks of treatment with SOF + R. RESULTS: Modeling results yielded a 100% negative predictive value for SOF + R treatment response in nine participants and suggested that a median of 13 [interquartile range: 8-16] weeks of therapy would be required for these patients to achieve cure. Modeling predicted cure after 5 weeks of therapy in the only modeled participant who achieved a sustained virological response. However, cure was also predicted for two participants who relapsed following treatment. CONCLUSIONS: The modeling results confirm that longer than 6 weeks of SOF + R is needed to reach cure in individuals with recent HCV infection. Prospective real-time modeling under current potent DAA regimens is needed to validate the potential of response-guided therapy in the management of recent HCV infection.


Assuntos
Antivirais/uso terapêutico , Duração da Terapia , Hepatite C/tratamento farmacológico , Modelos Teóricos , Adulto , Idoso , Quimioterapia Combinada , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , RNA Viral/sangue , Estudos Retrospectivos , Ribavirina/uso terapêutico , Sofosbuvir/uso terapêutico , Resposta Viral Sustentada , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
10.
J Infect Dis ; 222(7): 1165-1169, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32363394

RESUMO

We recently showed in a proof-of-concept study that real-time modeling-based response-guided therapy can shorten hepatitis C virus treatment duration with sofosbuvir-velpatasvir, elbasvir-grazoprevir, and sofosbuvir-ledipasvir without compromising efficacy, confirming our retrospective modeling reports in >200 patients. However, retrospective modeling of pibrentasvir-glecaprevir (P/G) treatment has yet to be evaluated. In the current study, modeling hepatitis C virus kinetics in 44 cirrhotic and noncirrhotic patients predicts that P/G treatment might have been reduced to 4, 6, and 7 weeks in 16%, 34%, and 14% of patients, respectively. These results support the further evaluation of a modeling-based response-guided therapy approach using P/G.


Assuntos
Antivirais/administração & dosagem , Benzimidazóis/administração & dosagem , Hepatite C Crônica/tratamento farmacológico , Pirrolidinas/administração & dosagem , Quinoxalinas/administração & dosagem , Sulfonamidas/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Amidas/administração & dosagem , Carbamatos/administração & dosagem , Ciclopropanos/administração & dosagem , Esquema de Medicação , Combinação de Medicamentos , Quimioterapia Combinada , Duração da Terapia , Feminino , Fluorenos/administração & dosagem , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , RNA Viral/sangue , Estudos Retrospectivos , Sofosbuvir/administração & dosagem , Resposta Viral Sustentada , Fatores de Tempo
11.
Bioinformatics ; 36(9): 2920-2922, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31971575

RESUMO

SUMMARY: RNA design has conceptually evolved from the inverse RNA folding problem. In the classical inverse RNA problem, the user inputs an RNA secondary structure and receives an output RNA sequence that folds into it. Although modern RNA design methods are based on the same principle, a finer control over the resulting sequences is sought. As an important example, a substantial number of non-coding RNA families show high preservation in specific regions, while being more flexible in others and this information should be utilized in the design. By using the additional information, RNA design tools can help solve problems of practical interest in the growing fields of synthetic biology and nanotechnology. incaRNAfbinv 2.0 utilizes a fragment-based approach, enabling a control of specific RNA secondary structure motifs. The new version allows significantly more control over the general RNA shape, and also allows to express specific restrictions over each motif separately, in addition to other advanced features. AVAILABILITY AND IMPLEMENTATION: incaRNAfbinv 2.0 is available through a standalone package and a web-server at https://www.cs.bgu.ac.il/incaRNAfbinv. Source code, command-line and GUI wrappers can be found at https://github.com/matandro/RNAsfbinv. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA , Software , Motivos de Nucleotídeos , RNA/genética , Dobramento de RNA , Análise de Sequência de RNA
12.
Bull Math Biol ; 81(10): 3675-3721, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31338739

RESUMO

Mathematical models that are based on differential equations require detailed knowledge about the parameters that are included in the equations. Some of the parameters can be measured experimentally while others need to be estimated. When the models become more sophisticated, such as in the case of multiscale models of hepatitis C virus dynamics that deal with partial differential equations (PDEs), several strategies can be tried. It is possible to use parameter estimation on an analytical approximation of the solution to the multiscale model equations, namely the long-term approximation, but this limits the scope of the parameter estimation method used and a long-term approximation needs to be derived for each model. It is possible to transform the PDE multiscale model to a system of ODEs, but this has an effect on the model parameters themselves and the transformation can become problematic for some models. Finally, it is possible to use numerical solutions for the multiscale model and then use canned methods for the parameter estimation, but the latter is making the user dependent on a black box without having full control over the method. The strategy developed here is to start by working directly on the multiscale model equations for preparing them toward the parameter estimation method that is fully coded and controlled by the user. It can also be adapted to multiscale models of other viruses. The new method is described, and illustrations are provided using a user-friendly simulator that incorporates the method.


Assuntos
Hepacivirus/fisiologia , Hepatite C Crônica/virologia , Modelos Biológicos , Antivirais/uso terapêutico , Simulação por Computador , Hepatite C Crônica/terapia , Humanos , Cinética , Conceitos Matemáticos
13.
Brief Bioinform ; 19(2): 350-358, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28049135

RESUMO

Computational programs for predicting RNA sequences with desired folding properties have been extensively developed and expanded in the past several years. Given a secondary structure, these programs aim to predict sequences that fold into a target minimum free energy secondary structure, while considering various constraints. This procedure is called inverse RNA folding. Inverse RNA folding has been traditionally used to design optimized RNAs with favorable properties, an application that is expected to grow considerably in the future in light of advances in the expanding new fields of synthetic biology and RNA nanostructures. Moreover, it was recently demonstrated that inverse RNA folding can successfully be used as a valuable preprocessing step in computational detection of novel noncoding RNAs. This review describes the most popular freeware programs that have been developed for such purposes, starting from RNAinverse that was devised when formulating the inverse RNA folding problem. The most recently published ones that consider RNA secondary structure as input are antaRNA, RNAiFold and incaRNAfbinv, each having different features that could be beneficial to specific biological problems in practice. The various programs also use distinct approaches, ranging from ant colony optimization to constraint programming, in addition to adaptive walk, simulated annealing and Boltzmann sampling. This review compares between the various programs and provides a simple description of the various possibilities that would benefit practitioners in selecting the most suitable program. It is geared for specific tasks requiring RNA design based on input secondary structure, with an outlook toward the future of RNA design programs.


Assuntos
Algoritmos , Conformação de Ácido Nucleico , Dobramento de RNA , RNA/química , Software , Animais , Biologia Computacional/métodos , Humanos , Modelos Moleculares
14.
Artigo em Inglês | MEDLINE | ID: mdl-30854378

RESUMO

The multiscale model of hepatitis C virus (HCV) dynamics, which includes intracellular viral RNA (vRNA) replication, has been formulated in recent years in order to provide a new conceptual framework for understanding the mechanism of action of a variety of agents for the treatment of HCV. We present a robust and efficient numerical method that belongs to the family of adaptive stepsize methods and is implicit, a Rosenbrock type method that is highly suited to solve this problem. We provide a Graphical User Interface that applies this method and is useful for simulating viral dynamics during treatment with anti-HCV agents that act against HCV on the molecular level.

15.
Methods Mol Biol ; 1269: 3-16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25577369

RESUMO

Determining the RNA secondary structure from sequence data by computational predictions is a long-standing problem. Its solution has been approached in two distinctive ways. If a multiple sequence alignment of a collection of homologous sequences is available, the comparative method uses phylogeny to determine conserved base pairs that are more likely to form as a result of billions of years of evolution than by chance. In the case of single sequences, recursive algorithms that compute free energy structures by using empirically derived energy parameters have been developed. This latter approach of RNA folding prediction by energy minimization is widely used to predict RNA secondary structure from sequence. For a significant number of RNA molecules, the secondary structure of the RNA molecule is indicative of its function and its computational prediction by minimizing its free energy is important for its functional analysis. A general method for free energy minimization to predict RNA secondary structures is dynamic programming, although other optimization methods have been developed as well along with empirically derived energy parameters. In this chapter, we introduce and illustrate by examples the approach of free energy minimization to predict RNA secondary structures.


Assuntos
RNA/química , Algoritmos , Biologia Computacional , Conformação de Ácido Nucleico , Dobramento de RNA
16.
PLoS One ; 9(4): e94340, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24718440

RESUMO

The mechanism of RNA thermometers is a subject of growing interest. Also known as RNA thermosensors, these temperature-sensitive segments of the mRNA regulate gene expression by changing their secondary structure in response to temperature fluctuations. The detection of RNA thermometers in various genes of interest is valuable as it could lead to the discovery of new thermometers participating in fundamental processes such as preferential translation during heat-shock. RNAthermsw is a user-friendly webserver for predicting the location of RNA thermometers using direct temperature simulations. It operates by analyzing dotted figures generated as a result of a moving window that performs successive energy minimization folding predictions. Inputs include the RNA sequence, window size, and desired temperature change. RNAthermsw can be freely accessed at http://www.cs.bgu.ac.il/~rnathemsw/RNAthemsw/ (with the slash sign at the end). The website contains a help page with explanations regarding the exact usage.


Assuntos
Simulação por Computador , RNA/química , Software , Temperatura , Termômetros , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Humanos , Conformação de Ácido Nucleico , RNA/genética
17.
Wiley Interdiscip Rev RNA ; 4(2): 205-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23386427

RESUMO

Dot plots were originally introduced in bioinformatics as dot-containing images used to compare biological sequences and identify regions of close similarity between them. In addition to similarity, dot plots were extended to possibly represent interactions between building blocks of biological sequences, where the dots can vary in size or color according to desired features. In this survey, we first review their use in representing an RNA secondary structure, which has mostly been applied for displaying the output secondary structures as a result of running RNA folding prediction algorithms. Such a result may often contain suboptimal solutions in addition to the optimal one, which can be easily incorporated in the dot plot. We then proceed from their passive use of providing RNA secondary structure snapshots to their active use of illustrating RNA secondary structure manipulations in beneficial ways. While comparison between RNA secondary structures can mostly be done efficiently using a string representation, there are notable advantages in using dot plots for analyzing the suboptimal solutions that convey important information about the structure of the RNA molecule. In addition, structure-based alignment of dot plots has been advanced considerably and the filtering of dot plots that considers chemical and enzymatic data from structure determination experiments has been suggested. We discuss these procedures and how they can be enhanced in the future by using an image representation to analyze RNA secondary structures and examine their manipulations.


Assuntos
Imageamento Tridimensional/métodos , RNA/química , Animais , Humanos , Imageamento Tridimensional/instrumentação , Modelos Moleculares , Conformação de Ácido Nucleico , RNA/genética , RNA/metabolismo
18.
Comput Biol Chem ; 41: 35-40, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23147564

RESUMO

The secondary structure of RNAs can be represented by graphs at various resolutions. While it was shown that RNA secondary structures can be represented by coarse grain tree-graphs and meaningful topological indices can be used to distinguish between various structures, small RNAs are needed to be represented by full graphs. No meaningful topological index has yet been suggested for the analysis of such type of RNA graphs. Recalling that the second eigenvalue of the Laplacian matrix can be used to track topological changes in the case of coarse grain tree-graphs, it is plausible to assume that a topological index such as the Wiener index that represents all Laplacian eigenvalues may provide a similar guide for full graphs. However, by its original definition, the Wiener index was defined for acyclic graphs. Nevertheless, similarly to cyclic chemical graphs, small RNA graphs can be analyzed using elementary cuts, which enables the calculation of topological indices for small RNAs in an intuitive way. We show how to calculate a structural descriptor that is suitable for cyclic graphs, the Szeged index, for small RNA graphs by elementary cuts. We discuss potential uses of such a procedure that considers all eigenvalues of the associated Laplacian matrices to quantify the topology of small RNA graphs.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Sequência de Bases , Dados de Sequência Molecular
19.
Algorithms Mol Biol ; 7(1): 24, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22958879

RESUMO

MOTIVATION: Methods for simulating the kinetic folding of RNAs by numerically solving the chemical master equation have been developed since the late 90's, notably the programs Kinfold and Treekin with Barriers that are available in the Vienna RNA package. Our goal is to formulate extensions to the algorithms used, starting from the Gillespie algorithm, that will allow numerical simulations of mid-size (~ 60-150 nt) RNA kinetics in some practical cases where numerous distributions of folding times are desired. These extensions can contribute to analyses and predictions of RNA folding in biologically significant problems. RESULTS: By describing in a particular way the reduction of numerical simulations of RNA folding kinetics into the Gillespie stochastic simulation algorithm for chemical reactions, it is possible to formulate extensions to the basic algorithm that will exploit memoization and parallelism for efficient computations. These can be used to advance forward from the small examples demonstrated to larger examples of biological interest. SOFTWARE: The implementation that is described and used for the Gillespie algorithm is freely available by contacting the authors, noting that the efficient procedures suggested may also be applicable along with Vienna's Kinfold.

20.
BMC Bioinformatics ; 12: 319, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21813013

RESUMO

BACKGROUND: RNAexinv is an interactive java application that performs RNA sequence design, constrained to yield a specific RNA shape and physical attributes. It is an extended inverse RNA folding program with the rationale behind that the generated sequences should not only fold into a desired structure, but they should also exhibit favorable attributes such as thermodynamic stability and mutational robustness. RNAexinv considers not only the secondary structure in order to design sequences, but also the mutational robustness and the minimum free energy. The sequences that are generated may not fully conform with the given RNA secondary structure, but they will strictly conform with the RNA shape of the given secondary structure and thereby take into consideration the recommended values of thermodynamic stability and mutational robustness that are provided. RESULTS: The output consists of designed sequences that are generated by the proposed method. Selecting a sequence displays the secondary structure drawings of the target and the predicted fold of the sequence, including some basic information about the desired and achieved thermodynamic stability and mutational robustness. RNAexinv can be used successfully without prior experience, simply specifying an initial RNA secondary structure in dot-bracket notation and numerical values for the desired neutrality and minimum free energy. The package runs under LINUX operating system. Secondary structure predictions are performed using the Vienna RNA package. CONCLUSIONS: RNAexinv is a user friendly tool that can be used for RNA sequence design. It is especially useful in cases where a functional stem-loop structure of a natural sequence should be strictly kept in the designed sequences but a distant motif in the rest of the structure may contain one more or less nucleotide at the expense of another, as long as the global shape is preserved. This allows the insertion of physical observables as constraints. RNAexinv is available at http://www.cs.bgu.ac.il/~RNAexinv.


Assuntos
Dobramento de RNA , RNA/química , Software , Algoritmos , Sequência de Bases , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA/genética , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...